30 research outputs found

    Trends in Biodiesel Production from Animal Fat Waste

    Get PDF
    © 2020 by the authors.The agro-food industry generates large amounts of waste that contribute to environmental contamination. Animal fat waste constitutes some of the most relevant waste and the treatment of such waste is quite costly because environmental regulations are quite strict. Part of such costs might be reduced through the generation of bioenergy. Biodiesel constitutes a valid renewable source of energy because it is biodegradable, non-toxic and has a good combustion emission profile and can be blended up to 20% with fossil diesel for its use in many countries. Furthermore, up to 70% of the total cost of biodiesel majorly depends on the cost of the raw materials used, which can be reduced using animal fat waste because they are cheaper than vegetable oil waste. In fact, 6% of total feedstock corresponded to animal fat in 2019. Transesterification with alkaline catalysis is still preferred at industrial plants producing biodiesel. Recent developments in heterogeneous catalysts that can be easily recovered, regenerated and reused, as well as immobilized lipases with increased stability and resistance to alcohol denaturation, are promising for future industrial use. This manuscript reviews the available processes and recent advances for biodiesel generation from animal fat waste.This research was funded by European Marie Curie project, grant number 614281 (HIGHVALFOOD) and European Regional Development Fund.Peer reviewe

    New insights into meat by-products utilization

    Get PDF
    Meat industry generates large volumes of by-products like blood, bones, meat trimmings, skin, fatty tissues, horns, hoofs, feet, skull and viscera among others that are costly to be treated and disposed ecologically. These costs can be balanced through innovation to generate added value products that increase its profitability. Rendering results in feed ingredients for livestock, poultry and aquaculture as well as for pet foods. Energy valorization can be obtained through the thermochemical processing of meat and bone meal or the use of waste animal fats for the production of biodiesel. More recently, new applications have been reported like the production of polyhydroxyalkanoates as alternative to plastics produced from petroleum. Other interesting valorization strategies are based on the hydrolysis of by-products to obtain added value products like bioactive peptides with relevant physiological effects as antihypertensive, antioxidant, antidiabetic, antimicrobial, etc. with promising applications in the food, pharmaceutical and cosmetics industry. This paper reports and discusses the latest developments and trends in the use and valorisation of meat industry by-products.Grant AGL2014-57367-R from MINECO (Spain) and FEDER funds, Grant GV/2015/138 from Generalitat Valenciana (Spain) and JAEDOC-CSIC, postdoctoral contract of L.M. co-funded by the European Social Fund are acknowledged.Peer reviewe

    Surface Functionalization with Ni of Fe0.7Cr1.3O3/8YSZ Electrode in a Potentiometric Sensor To Selectively Detect C2H4

    Full text link
    [EN] This work presents a multidevice potentiometric sensor consisting of Fe0.7Cr1.3O3/8YSZ//8YSZ//Pt to detect selectively C2H4 with a low cross-sensitivity to CO in diesel exhaust gases. The device has been designed as a multisensor to measure up to four channels at the same time. A dense 8YSZ disk is employed as oxide-ion conducting electrolyte where four rectangular-shape working electrodes (Fe0.7Cr13O3/8YSZ) are screen-printed in one face while one common cross-shape reference electrode (LSM/8YSZ) is screen printed in the back face. Two major improvements are proposed in this work: first, change the reference electrode from state-of-the-art Pt to LSM/8YSZ, inexpensive and more active to oxygen. And second, increase the catalytic activity of the working electrode to improve the response of the sensor under wet conditions. The surface activation by nickel and ruthenium nanoparticles deposition enables reduction of the cross-sensitivity toward CO even in wet atmospheres. Ni nanoparticles selectively boost the electrochemically driven oxidation to C2H4 with respect to CO oxidation, as inferred by impedance spectroscopy analysisFunding from Spanish Government (Grants AP-2003-03478, SEV-2016-0683, and ENE2014-57651) is kindly acknowledged. FPU scholarship to F.T.-R. from the Spanish Ministry of Education, Culture and Sport is also acknowledged.Toldrá-Reig, F.; Serra Alfaro, JM. (2018). Surface Functionalization with Ni of Fe0.7Cr1.3O3/8YSZ Electrode in a Potentiometric Sensor To Selectively Detect C2H4. ACS Applied Nano Materials. 1(12):6666-6673. https://doi.org/10.1021/acsanm.8b014866666667311

    Management of meat by- and co- products for an improved meat processing sustainability

    Full text link
    [EN] Large amounts of meat by- and co-products are generated during slaughtering and meat processing, and require rational management of these products for an ecological disposal. Efficient solutions are very important for sustainability and innovative developments create high added-value from meat by-products with the least environmental impact, handling and disposal costs, in its transition to bioeconomy. Some proteins have relevant technological uses for gelation, foaming and emulsification while protein hydrolyzates may contribute to a better digestibility and palatability. Protein hydrolysis generate added-value products such as bioactive peptides with relevant physiological effects of interest for applications in the food, pet food, pharmaceutical and cosmetics industry. Inedible fats are increasingly used as raw material for the generation of biodiesel. Other applications are focused on the development of new biodegradable plastics that can constitute an alternative to petroleumbased plastics. This manuscript presents the latest developments for adding value to meat by- and co-products and discusses opportunities for making meat production and processing more sustainable.Grant from AGL2017-89831-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds. The Ramon y Cajal postdoctoral contract to LM is also acknowledged.Toldrá Vilardell, F.; Reig Riera, MM.; Mora Soler, L. (2021). Management of meat by- and co- products for an improved meat processing sustainability. Meat Science. 181:1-9. https://doi.org/10.1016/j.meatsci.2021.108608S1918

    New Insights into meat by-product utilization

    Get PDF
    [EN] Meat industry generates large volumes of by-products like blood, bones, meat trimmings, skin, fatty tissues, horns, hoofs, feet, skull and viscera among others that are costly to be treated and disposed ecologically. These costs can be balanced through innovation to generate added value products that increase its profitability. Rendering results in feed ingredients for livestock, poultry and aquaculture as well as for pet foods. Energy valorization can be obtained through the thermochemical processing of meat and bone meal or the use of waste animal fats for the production of biodiesel. More recently, new applications have been reported like the production of polyhydroxyalkanoates as alternative to plastics produced from petroleum. Other interesting valorization strategies are based on the hydrolysis of by-products to obtain added value products like bioactive peptides with relevant physiological effects as antihypertensive, antioxidant, antidiabetic, antimicrobial, etc. with promising applications in the food, pharmaceutical and cosmetics industry. This paper reports and discusses the latest developments and trends in the use and valorisation of meat industry by-products. (C) 2016 Elsevier Ltd. All rights reserved.Grant AGL2014-57367-R from MINECO (Spain) and FEDER funds, Grant GV/2015/138 from Generalitat Valenciana (Spain) and JAEDOCCSIC, postdoctoral contract of L.M. co-funded by the European Social Fund are acknowledged.Toldrá Vilardell, F.; Mora Soler, L.; Reig Riera, MM. (2016). New Insights into meat by-product utilization. Meat Science. 120:54-59. https://doi.org/10.1016/j.meatsci.2016.04021S545912

    Stability of the potent antioxidant peptideSNAAC identified from Spanish dry cured ham

    Full text link
    [EN] Antioxidant peptides positively regulate oxidative stress in the human body as well as delay, retard or prevent protein and lipid oxidation in food products. Spanish dry-cured ham has been reported as a good source of bioactive peptides, being SNAAC the most active antioxidant peptide identified to date. In this work, the stability of this peptide against in vitro digestion, heat treatments and different salt concentrations was evaluated using three methods for measuring antioxidant activity: D-carotene bleaching assay, ABTS radical scavenging capacity and ORAC assay. The results evidenced a marked decrease in the antioxidant activity of SNAAC after gastrointestinal digestion, and the MALDI-ToF MS analysis revealed the degradation of the peptide after the process, the generation of the fragment SNAA and the presence of a peptide dimer throughout the in vitro digestion. On the other hand, the peptide SNAAC showed good heat stability after exposure to different temperatures (50 degrees C, 72 degrees C, and 90 degrees C), but its antioxidant activity evaluated by ORAC assay decreased substantially when exposed to 100 degrees C as compared with the control at 37 degrees C. SNAAC remained stable in the presence of salt at concentrations ranging from 0 to 8% NaCl as well as it was able to inhibit about 40% of lipid oxidation in an emulsion system. These results reported the stability of the antioxidant peptide SNAAC to several conditions used in meat industry for the processing of dry-cured hams and ham-derived products and its effectiveness to partially prevent the lipid oxidation in these products. However, some strategies would be needed in order to increase the stability of the peptide during gastrointestinal digestion and thus improve its bioavailability to be used as functional food ingredient.Emerging Research Group Grant from Generalitat Valenciana in Spain (GV/2015/138) and Juan de la Cierva postdoctoral contract to LM are acknowledged. Grant Agreement 614281 (HIGHVALFOOD) and contract to MG are also acknowledged. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed, PRB2-ISCIII, (IPT13/0001 - ISCII-SGEFI/FEDER).Gallego-Ibáñez, M.; Mora Soler, L.; Reig Riera, MM.; Toldrá Vilardell, F. (2018). Stability of the potent antioxidant peptideSNAAC identified from Spanish dry cured ham. Food Research International. (105):873-879. https://doi.org/10.1016/j.foodres.2017.12.006S87387910

    Generation of bioactive peptides during food processing

    Get PDF
    [EN] Large amounts of peptides are naturally generated in foods through the proteolysis phenomena taking place during processing. Such proteolysis is carried out either by endogenous enzymes in ripened foods or by the combined action of endogenous and microbial enzymes when fermented. Food proteins can also be isolated and hydrolysed by peptidases to produce hydrolysates. endo-peptidases act first followed by the successive action of exo-peptidases (mainly, tri-and di-peptidylpeptidases, aminopeptidases and carboxypeptidases). The generated peptides may be further hydrolysed through the gastrointestinal digestion resulting in a pool of peptides with different sequences and lengths, some of them with relevant bioactivity. However, these peptides should be absorbed intact through the intestinal barrier and reach the blood stream to exert their physiological action. This manuscript is reporting the enzymatic routes and strategies followed for the generation of bioactive peptides. (C) 2017 Elsevier Ltd. All rights reserved.The research leading to these results received funding from Grant AGL2014-57367-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds and from the European Union 7th Framework Programme (FP7/2007-2013) under Grant Agreement 312090 (BACCHUS). This publication reflects only the author views and the Community is not liable for any use made of the information contained therein. The Juan de la Cierva postdoctoral contract to LM is also acknowledged. Mass spectrometry analysis was performed in the SCSIE_University of Valencia Proteomics Unit, a member of ISCIII ProteoRed Proteomics Platform.Toldrá Vilardell, F.; Reig Riera, MM.; Aristoy Albert, MC.; Mora Soler, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry. 267:395-404. https://doi.org/10.1016/j.foodchem.2017.06.119S39540426

    Bioactive peptides generated in the processing of dry-cured ham

    Full text link
    [EN] Peptides and free amino acids are naturally generated in dry-cured ham as a consequence of proteolysis phenomenon exerted by muscle peptidases. The generation of bioactive peptides in different types of dry-cured ham produced in Spain, Italy and China is reviewed in this manuscript. Major muscle proteins are extensively hydrolysed firstly by endogenous endo-peptidases followed by the successive action of exo-peptidases, mainly, triand di-peptidylpeptidases, aminopeptidases and carboxypeptidases. Such proteolysis is very intense and consists of the generation of large amounts of free amino acids and a good number of peptides with different sequences and lengths, some of them exerting relevant bioactivities like angiotensin converting enzyme inhibitory activity, antioxidant activity, di-peptidylpeptidase IV inhibitory activity among other and in vivo antihypertensive, hypoglycemic or anti-inflammatory activity. This manuscript reviews the recent findings showing that dry-cured ham constitutes a good source of natural bioactive peptides that have potential benefit for human health.The research leading to these results received funding from Grant AGL2017-89831-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds The Ramon y Cajal postdoctoral contract to LM is also acknowledged.Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy, M.; Mora, L. (2020). Bioactive peptides generated in the processing of dry-cured ham. Food Chemistry. 321:1-9. https://doi.org/10.1016/j.foodchem.2020.126689S19321Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244-256. doi:10.1016/j.fbp.2016.02.003American Cancer Society (2012) ACS Guidelines for Nutrition and Physical Activity. https://www.cancer.org/healthy/eat-healthy-get-active/acs-guidelines-nutrition-physical-activity-cancer-prevention/guidelines.html. (Accesed 25 february 2020).Arroume, N., Froidevaux, R., Kapel, R., Cudennec, B., Ravallec, R., Flahaut, C., … Dhulster, P. (2016). Food peptides: purification, identification and role in the metabolism. Current Opinion in Food Science, 7, 101-107. doi:10.1016/j.cofs.2016.02.005Bosse (née Danz), R., Müller, A., Gibis, M., Weiss, A., Schmidt, H., & Weiss, J. (2017). Recent advances in cured raw ham manufacture. Critical Reviews in Food Science and Nutrition, 58(4), 610-630. doi:10.1080/10408398.2016.1208634Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Gutiérrez-López, G. F., & Dávila-Ortiz, G. (2012). Use of Proteomics and Peptidomics Methods in Food Bioactive Peptide Science and Engineering. Food Engineering Reviews, 4(4), 224-243. doi:10.1007/s12393-012-9058-8Chenni, F. Z., Taché, S., Naud, N., Guéraud, F., Hobbs, D. A., Kunhle, G. G. C., … Corpet, D. E. (2013). Heme-Induced Biomarkers Associated with Red Meat Promotion of colon Cancer Are Not Modulated by the Intake of Nitrite. Nutrition and Cancer, 65(2), 227-233. doi:10.1080/01635581.2013.749291Dellafiora, L., Paolella, S., Dall’Asta, C., Dossena, A., Cozzini, P. & Galaverna, G. (2015). Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham. Journal of Agricultural & Food Chemistry, 63, 6366−6375. doi: 10.1021/acs.jafc.5b02303.EFSA (European Food Safety Authority) (2017). Re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. The EFSA Journal, 15, 4786. doi: 10.2903/j.efsa.2017.4786.Escudero, E., Aristoy, M.-C., Nishimura, H., Arihara, K., & Toldrá, F. (2012). Antihypertensive effect and antioxidant activity of peptide fractions extracted from Spanish dry-cured ham. Meat Science, 91(3), 306-311. doi:10.1016/j.meatsci.2012.02.008Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., Arihara, K., & Toldrá, F. (2013). Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 78, 499-507. doi:10.1016/j.jprot.2012.10.019Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2-3), 1282-1288. doi:10.1016/j.foodchem.2012.10.133Escudero, E., Mora, L., & Toldrá, F. (2014). Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chemistry, 161, 305-311. doi:10.1016/j.foodchem.2014.03.117Flores, M., Mora, L., Reig, M., & Toldrá, F. (2019). Risk assessment of chemical substances of safety concern generated in processed meats. Food Science and Human Wellness, 8(3), 244-251. doi:10.1016/j.fshw.2019.07.003Gallego, M., Aristoy, M.-C., & Toldrá, F. (2014). Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 96(2), 757-761. doi:10.1016/j.meatsci.2013.09.014Gallego, M., Grootaert, C., Mora, L., Aristoy, M. C., Van Camp, J., & Toldrá, F. (2016). Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388-395. doi:10.1016/j.jff.2015.11.046Mora, L., Gallego, M., & Toldrá, F. (2018). New approaches based on comparative proteomics for the assessment of food quality. Current Opinion in Food Science, 22, 22-27. doi:10.1016/j.cofs.2018.01.005Gallego, M., Mora, L. & Toldrá, F. (2018b). Perspectives in the use of peptidomics in ham. Proteomics, 18, 1700422 (1-9). doi: 10.1002/pmic.201700422.Gallego, M., Mora, L., & Toldrá, F. (2018). Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 19, 8-14. doi:10.1016/j.cofs.2017.12.004Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 258, 8-15. doi:10.1016/j.foodchem.2018.03.035Gallego, M., Mora, L., Reig, M., & Toldrá, F. (2018). Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 105, 873-879. doi:10.1016/j.foodres.2017.12.006Gallego, M., Mora, L., & Toldrá, F. (2019). Potential cardioprotective peptides generated in Spanish dry-cured ham. Journal of Food Bioactives, 6. doi:10.31665/jfb.2019.6188Gierse, J., Thorarensen, A., Beltey, K., Bradshaw-Pierce, E., Cortes-Burgos, L., Hall, T., … Masferrer, J. (2010). A Novel Autotaxin Inhibitor Reduces Lysophosphatidic Acid Levels in Plasma and the Site of Inflammation. Journal of Pharmacology and Experimental Therapeutics, 334(1), 310-317. doi:10.1124/jpet.110.165845Gu, Y., Majumder, K., & Wu, J. (2011). QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides. Food Research International, 44(8), 2465-2474. doi:10.1016/j.foodres.2011.01.051IARC (International Agency for Research on Cancer, World Helath Organization) (2015). IARC Monographs on the evaluation of carcinogenic risks to humans, vol 114, 1–498.Kanner, J. (1994). Oxidative processes in meat and meat products: Quality implications. Meat Science, 36(1-2), 169-189. doi:10.1016/0309-1740(94)90040-xLacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Evaluation of the potential of dietary proteins as precursors of dipeptidyl peptidase (DPP)-IV inhibitors by an in silico approach. Journal of Functional Foods, 4(2), 403-422. doi:10.1016/j.jff.2012.01.008Lafarga, T., O’Connor, P., & Hayes, M. (2014). Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 59, 53-62. doi:10.1016/j.peptides.2014.07.005Lammi, C., Aiello, G., Boschin, G., & Arnoldi, A. (2019). Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods, 55, 135-145. doi:10.1016/j.jff.2019.02.016Lan, V. T. T., Ito, K., Ohno, M., Motoyama, T., Ito, S., & Kawarasaki, Y. (2015). Analyzing a dipeptide library to identify human dipeptidyl peptidase IV inhibitor. Food Chemistry, 175, 66-73. doi:10.1016/j.foodchem.2014.11.131Li, H., & Aluko, R. E. (2010). Identification and Inhibitory Properties of Multifunctional Peptides from Pea Protein Hydrolysate. Journal of Agricultural and Food Chemistry, 58(21), 11471-11476. doi:10.1021/jf102538gLiu, R., Xing, L., Fu, Q., Zhou, G., & Zhang, W. (2016). A Review of Antioxidant Peptides Derived from Meat Muscle and By-Products. Antioxidants, 5(3), 32. doi:10.3390/antiox5030032Márquez Contreras, E., Vázquez-Rico, I., Baldonedo-Suárez, A., Márquez-Rivero, S., Jiménez, J., Machancoses, F., … León-Justel, A. (2018). Effect of moderate and regular consumption of Cinco Jotas acorn-fed 100% Iberian ham on overall cardiovascular risk: A cohort study. Food Science & Nutrition, 6(8), 2553-2559. doi:10.1002/fsn3.869Martínez-Sánchez, S. M., Minguela, A., Prieto-Merino, D., Zafrilla-Rentero, M. P., Abellán-Alemán, J., & Montoro-García, S. (2017). The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients, 9(4), 321. doi:10.3390/nu9040321Minkiewicz, P., Dziuba, J., & Michalska, J. (2011). Bovine Meat Proteins as Potential Precursors of Biologically Active Peptides - a Computational Study based on the BIOPEP Database. Food Science and Technology International, 17(1), 39-45. doi:10.1177/1082013210368461Montoro-García, S., Zafrilla-Rentero, M. P., Celdrán-de Haro, F. M., Piñero-de Armas, J. J., Toldrá, F., Tejada-Portero, L., & Abellán-Alemán, J. (2017). Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 38, 160-167. doi:10.1016/j.jff.2017.09.012Mora, L., Escudero, E., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Proteomic identification of antioxidant peptides from 400 to 2500Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Research International, 56, 68-76. doi:10.1016/j.foodres.2013.12.001Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005Mora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9-15. doi:10.1016/j.ijfoodmicro.2015.04.018Mora, L., Escudero, E., & Toldrá, F. (2016). Characterization of the peptide profile in Spanish Teruel, Italian Parma and Belgian dry-cured hams and its potential bioactivity. Food Research International, 89, 638-646. doi:10.1016/j.foodres.2016.09.016Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science & Technology, 69, 306-314. doi:10.1016/j.tifs.2017.04.011Mora, L., Sentandreu, M.A. & Toldrá, F. (2011) Intense degradation of myosin light chain isoforms after dry-cured ham processing. Journal of Agricultural & Food Chemistry, 2011, 59, 3884-3892. doi: 10.1021/jf104070q.Paolella, S., Falavigna, C., Faccini, A., Virgili, R., Sforza, S., Dall’Asta, C., … Galaverna, G. (2015). Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: Characterization of the released peptide fraction. Food Research International, 67, 136-144. doi:10.1016/j.foodres.2014.10.026Pripp, A. H., Isaksson, T., Stepaniak, L., & S�rhaug, T. (2004). Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. European Food Research and Technology, 219(6), 579-583. doi:10.1007/s00217-004-1004-4Pugliese, C., Sirtori, F., Škrlep, M., Piasentier, E., Calamai, L., Franci, O., & Čandek-Potokar, M. (2015). The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraški pršut. Meat Science, 100, 58-68. doi:10.1016/j.meatsci.2014.09.012Rao, S., Sun, J., Liu, Y., Zeng, H., Su, Y., & Yang, Y. (2012). ACE inhibitory peptides and antioxidant peptides derived from in vitro digestion hydrolysate of hen egg white lysozyme. Food Chemistry, 135(3), 1245-1252. doi:10.1016/j.foodchem.2012.05.059Toldrá, F., Rico, E., & Flores, J. (1993). Cathepsin B, D, H and L activities in the processing of dry-cured ham. Journal of the Science of Food and Agriculture, 62(2), 157-161. doi:10.1002/jsfa.2740620208Rodríguez-Nuñez, E., Aristoy, M.-C., & Toldrá, F. (1995). Peptide generation in the processing of dry-cured ham. Food Chemistry, 53(2), 187-190. doi:10.1016/0308-8146(95)90786-7Sánchez-Rivera, L., Martínez-Maqueda, D., Cruz-Huerta, E., Miralles, B., & Recio, I. (2014). Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Research International, 63, 170-181. doi:10.1016/j.foodres.2014.01.069Schurink, M., van Berkel, W. J. H., Wichers, H. J., & Boeriu, C. G. (2006). Identification of Lipoxygenase Inhibitory Peptides from β-Casein by Using SPOT Synthesis. ChemBioChem, 7(5), 743-747. doi:10.1002/cbic.200500461Segura-Campos, M., Chel-Guerrero, L., Betancur-Ancona, D., & Hernandez-Escalante, V. M. (2011). Bioavailability of Bioactive Peptides. Food Reviews International, 27(3), 213-226. doi:10.1080/87559129.2011.563395Sentandreu, M., & Toldrá, F. (2001). Dipeptidyl peptidase activities along the processing of Serrano dry-cured ham. European Food Research and Technology, 213(2), 83-87. doi:10.1007/s002170100355TOLDRÁ, F., CERVERÓ, M.-C., & PART, C. (1993). Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 58(4), 724-726. doi:10.1111/j.1365-2621.1993.tb09344.xToldrá, F., Reig, M., Aristoy, M.-C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. doi:10.1016/j.foodchem.2017.06.119Toldrá, F. (1998). Proteolysis and Lipolysis in Flavour Development of Dry-cured Meat Products. Meat Science, 49, S101-S110. doi:10.1016/s0309-1740(98)00077-1Toldrá, F., & Flores, M. (1998). The Role of Muscle Proteases and Lipases in Flavor Development During the Processing of Dry-Cured Ham. Critical Reviews in Food Science and Nutrition, 38(4), 331-352. doi:10.1080/10408699891274237Toldrá, F., Aristoy, M.-C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185. doi:10.1016/s0963-9969(00)00032-6Udenigwe, C. C., & Aluko, R. E. (2011). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 77(1), R11-R24. doi:10.1111/j.1750-3841.2011.02455.xVirgili, R., Saccani, G., Gabba, L., Tanzi, E., & Soresi Bordini, C. (2007). Changes of free amino acids and biogenic amines during extended ageing of Italian dry-cured ham. LWT - Food Science and Technology, 40(5), 871-878. doi:10.1016/j.lwt.2006.03.024Wang, B., & Li, B. (2017). Effect of molecular weight on the transepithelial transport and peptidase degradation of casein-derived peptides by using Caco-2 cell model. Food Chemistry, 218, 1-8. doi:10.1016/j.foodchem.2016.08.106Wang, L., Li, X., Li, Y., Liu, W., Jia, X., Qiao, X., … Wang, S. (2018). Antioxidant and angiotensin I-converting enzyme inhibitory activities of Xuanwei ham before and after cooking and in vitro simulated gastrointestinal digestion. Royal Society Open Science, 5(7), 180276. doi:10.1098/rsos.180276Wilensky, R. L., Shi, Y., Mohler, E. R., Hamamdzic, D., Burgert, M. E., Li, J., … Macphee, C. H. (2008). Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development. Nature Medicine, 14(10), 1059-1066. doi:10.1038/nm.1870Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., & Zhang, W. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951-958. doi:10.1016/j.foodchem.2015.08.101Zhang, J., Zhen, Z., Zhang, W., Zeng, T., & Zhou, G. (2009). Effect of intensifying high-temperature ripening on proteolysis, lipolysis and flavor of Jinhua ham. Journal of the Science of Food and Agriculture, 89(5), 834-842. doi:10.1002/jsfa.3521Zhao, G. M., Zhou, G. H., Wang, Y. L., Xu, X. L., Huan, Y. J., & Wu, J. Q. (2005). Time-related changes in cathepsin B and L activities during processing of Jinhua ham as a function of pH, salt and temperature. Meat Science, 70(2), 381-388. doi:10.1016/j.meatsci.2005.02.004Zhou, C.-Y., Pan, D.-D., Bai, Y., Li, C.-B., Xu, X.-L., Zhou, G.-H., & Cao, J.-X. (2019). Evaluating endogenous protease of salting exudates during the salting process of Jinhua ham. LWT, 101, 76-82. doi:10.1016/j.lwt.2018.11.026Zhou, G. H., & Zhao, G. M. (2007). Biochemical changes during processing of traditional Jinhua ham. Meat Science, 77(1), 114-120. doi:10.1016/j.meatsci.2007.03.028Zhu, C.-Z., Zhang, W.-G., Kang, Z.-L., Zhou, G.-H., & Xu, X.-L. (2014). Stability of an antioxidant peptide extracted from Jinhua ham. Meat Science, 96(2), 783-789. doi:10.1016/j.meatsci.2013.09.004Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., Xu, X.-L., Kang, Z.-L., & Yin, Y. (2013). Isolation and Identification of Antioxidant Peptides from Jinhua Ham. Journal of Agricultural and Food Chemistry, 61(6), 1265-1271. doi:10.1021/jf3044764Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., & Xu, X.-L. (2015). Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. Journal of the Science of Food and Agriculture, 96(1), 99-108. doi:10.1002/jsfa.7065Zhu, C.-Z., Tian, W., Li, M.-Y., Liu, Y.-X., & Zhao, G.-M. (2017). Separation and identification of peptides from dry-cured Jinhua ham. International Journal of Food Properties, 20(sup3), S2980-S2989. doi:10.1080/10942912.2017.138995

    Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products

    Full text link
    [EN] Dry-cured ham by-products have been traditionally used in Mediterranean household cooking of broths and stews. The aim of this work was to evaluate the effect of cooking treatments and in vitro gastrointestinal digestion on the antioxidant activity of natural peptides found in bones from Spanish dry-cured hams. The antioxidant activity was tested using five different assays and results demonstrated that cooking using conventional household methods increased the antioxidant activity of ham by-products when assessed using different antioxidant assays with the exception of the ABTS radical scavenging measurement assay. Simulated gastrointestinal digestion showed no significant effect on the antioxidant activity of ham by-products and antioxidant activity decreased when assessed using the ORAC and beta-carotene bleaching assays. Analysis by MALDI-TOF MS revealed a considerable breakdown of peptides due to the action of gastrointestinal enzymes, mainly in samples cooked at 100 degrees C for 1 h. In addition, 459 peptides derived from 57 proteins were identified and quantified using mass spectrometry in tandem, evidencing that peptides derived from collagen protein were responsible for the differences in antioxidant activities observed between the uncooked and cooked samples after digestion. The results show the potential of dry-cured ham bones as a source of antioxidant peptides that retain their bioactivity after household cooking preparations and gastrointestinal digestion.Emerging Research Group Grant from Generalitat Valenciana in Spain (GV/2015/138) and Juan de la Cierva postdoctoral contract to LM are acknowledged. Grant Agreement 614281 (HIGHVALFOOD) and contract to MG are also acknowledged. The proteomic analysis was performed in the proteomics facility of SCSIE University of Valencia that belongs to ProteoRed, PRB2-ISCIII, (IPT13/0001 - ISCIII-SGEFI/FEDER).Gallego Ibáñez, M.; Mora Soler, L.; Hayes, M.; Reig Riera, MM.; Toldrá Vilardell, F. (2017). Effect of cooking and in vitro digestion on the antioxidant activity of dry-cured ham by-products. FOOD RESEARCH INTERNATIONAL. 296-306. https://doi.org/10.1016/j.foodres.2017.04.027S29630

    Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity

    Full text link
    "This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.9b08297"[EN] There is a wide variety of peptides released from food proteins that are able to exert a relevant benefit for human health, such as angiotensin-converting enzyme inhibition, antioxidant, anti-inflammatory, hypoglucemic, or antithrombotic activity, among others. This manuscript is reviewing the recent advances on enzymatic mechanisms for the hydrolysis of proteins from foods of animal origin, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive peptides through advanced proteomic tools, and the assessment of bioactivity and its beneficial effects. Specific applications in fermented and/or ripened foods where a significant number of bioactive peptides have been reported with relevant in vivo physiological effects on laboratory rats and humans as well as the hydrolysis of animal food proteins for the production of bioactive peptides are also reviewed.The research leading to these results received funding from Grant GL2017-89381-R from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds. Ramon y Cajal postdoctoral contract to Leticia Mora is also acknowledged. Fidel Toldrá is grateful for the 2019 Award for Advancement of Application of Agricultural and Food Chemistry received from the Agricultural and Food Chemistry Division (AGFD) at the San Diego 258th ACS Conference meeting.Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy Albert, MC.; Mora Soler, L. (2020). Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. Journal of Agricultural and Food Chemistry. 68(46):12842-12855. https://doi.org/10.1021/acs.jafc.9b08297S12842128556846Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48-55. doi:10.1016/j.peptides.2014.09.001Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health – A review. Saudi Journal of Biological Sciences, 23(5), 577-583. doi:10.1016/j.sjbs.2015.06.005Mora, L., Escudero, E., Arihara, K., & Toldrá, F. (2015). Antihypertensive effect of peptides naturally generated during Iberian dry-cured ham processing. Food Research International, 78, 71-78. doi:10.1016/j.foodres.2015.11.005Santiago-López, L., Aguilar-Toalá, J. E., Hernández-Mendoza, A., Vallejo-Cordoba, B., Liceaga, A. M., & González-Córdova, A. F. (2018). Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of Dairy Science, 101(5), 3742-3757. doi:10.3168/jds.2017-13465Gallego, M., Mora, L., Escudero, E., & Toldrá, F. (2018). Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. International Journal of Food Microbiology, 276, 71-78. doi:10.1016/j.ijfoodmicro.2018.04.009Jensen, I.-J., & Mæhre, H. (2016). Preclinical and Clinical Studies on Antioxidative, Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides—A Review. Marine Drugs, 14(11), 211. doi:10.3390/md14110211Nongonierma, A. B., & FitzGerald, R. J. (2016). Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology, 50, 26-43. doi:10.1016/j.tifs.2016.01.022Schlienger, J.-L., Paillard, F., Lecerf, J.-M., Romon, M., Bonhomme, C., Schmitt, B., … Bresson, J.-L. (2014). Effect on blood lipids of two daily servings of Camembert cheese. An intervention trial in mildly hypercholesterolemic subjects. International Journal of Food Sciences and Nutrition, 65(8), 1013-1018. doi:10.3109/09637486.2014.945156Nilsen, R., Pripp, A. H., Høstmark, A. T., Haug, A., & Skeie, S. (2016). Effect of a cheese rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost®) and a Gouda-type cheese on blood pressure: results of a randomised trial. Food & Nutrition Research, 60(1), 32017. doi:10.3402/fnr.v60.32017Montoro-García, S., Zafrilla-Rentero, M. P., Celdrán-de Haro, F. M., Piñero-de Armas, J. J., Toldrá, F., Tejada-Portero, L., & Abellán-Alemán, J. (2017). Effects of dry-cured ham rich in bioactive peptides on cardiovascular health: A randomized controlled trial. Journal of Functional Foods, 38, 160-167. doi:10.1016/j.jff.2017.09.012Martínez-Sánchez, S. M., Minguela, A., Prieto-Merino, D., Zafrilla-Rentero, M. P., Abellán-Alemán, J., & Montoro-García, S. (2017). The Effect of Regular Intake of Dry-Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte Activation Markers in Humans. Nutrients, 9(4), 321. doi:10.3390/nu9040321Ryder, K., Bekhit, A. E.-D., McConnell, M., & Carne, A. (2016). Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry, 208, 42-50. doi:10.1016/j.foodchem.2016.03.121Toldrá, F., Reig, M., Aristoy, M.-C., & Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395-404. doi:10.1016/j.foodchem.2017.06.119Oseguera-Toledo, M. E., González de Mejía, E., Reynoso-Camacho, R., Cardador-Martínez, A., & Amaya-Llano, S. L. (2014). Proteins and bioactive peptides. Nutrafoods, 13(4), 147-157. doi:10.1007/s13749-014-0052-zLassoued, I., Mora, L., Nasri, R., Jridi, M., Toldrá, F., Aristoy, M.-C., … Nasri, M. (2015). Characterization and comparative assessment of antioxidant and ACE inhibitory activities of thornback ray gelatin hydrolysates. Journal of Functional Foods, 13, 225-238. doi:10.1016/j.jff.2014.12.042Abdelhedi, O., Jridi, M., Jemil, I., Mora, L., Toldrá, F., Aristoy, M.-C., … Nasri, R. (2016). Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities. Food Research International, 86, 9-23. doi:10.1016/j.foodres.2016.05.013Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product utilization. Meat Science, 120, 54-59. doi:10.1016/j.meatsci.2016.04.021Tanzadehpanah, H., Asoodeh, A., & Chamani, J. (2012). An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Research International, 49(1), 105-111. doi:10.1016/j.foodres.2012.08.022Pepe, G., Sommella, E., Ventre, G., Scala, M. C., Adesso, S., Ostacolo, C., … Campiglia, P. (2016). Antioxidant peptides released from gastrointestinal digestion of «Stracchino» soft cheese: Characterization, in vitro intestinal protection and bioavailability. Journal of Functional Foods, 26, 494-505. doi:10.1016/j.jff.2016.08.021Kamdem, J. P., & Tsopmo, A. (2017). Reactivity of peptides within the food matrix. Journal of Food Biochemistry, 43(1), e12489. doi:10.1111/jfbc.12489Gallego, M., Mora, L., & Toldrá, F. (2018). Health relevance of antihypertensive peptides in foods. Current Opinion in Food Science, 19, 8-14. doi:10.1016/j.cofs.2017.12.004Mora, L., Gallego, M., Reig, M., & Toldrá, F. (2017). Challenges in the quantitation of naturally generated bioactive peptides in processed meats. Trends in Food Science & Technology, 69, 306-314. doi:10.1016/j.tifs.2017.04.011Sentandreu, M. Á., & Toldrá, F. (2006). Oligopeptides hydrolysed by muscle dipeptidyl peptidases can generate angiotensin-I converting enzyme inhibitory dipeptides. European Food Research and Technology, 224(6), 785-790. doi:10.1007/s00217-006-0367-0Mora, L., Escudero, E., Aristoy, M.-C., & Toldrá, F. (2015). A peptidomic approach to study the contribution of added casein proteins to the peptide profile in Spanish dry-fermented sausages. International Journal of Food Microbiology, 212, 41-48. doi:10.1016/j.ijfoodmicro.2015.05.022Mora, L., M, G., & F, T. (2019). Degradation of myosin heavy chain and its potential as a source of natural bioactive peptides in dry-cured ham. Food Bioscience, 30, 100416. doi:10.1016/j.fbio.2019.100416Mora, L., Fraser, P. D., & Toldrá, F. (2013). Proteolysis follow-up in dry-cured meat products through proteomic approaches. Food Research International, 54(1), 1292-1297. doi:10.1016/j.foodres.2012.09.042López, C. M., Bru, E., Vignolo, G. M., & Fadda, S. G. (2015). Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages. Meat Science, 104, 20-29. doi:10.1016/j.meatsci.2015.01.013Gallego, M., Grootaert, C., Mora, L., Aristoy, M. C., Van Camp, J., & Toldrá, F. (2016). Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388-395. doi:10.1016/j.jff.2015.11.046Mora, L., Sentandreu, M. A., & Toldrá, F. (2011). Intense Degradation of Myosin Light Chain Isoforms in Spanish Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 59(8), 3884-3892. doi:10.1021/jf104070qMora, L., Gallego, M., Escudero, E., Reig, M., Aristoy, M.-C., & Toldrá, F. (2015). Small peptides hydrolysis in dry-cured meats. International Journal of Food Microbiology, 212, 9-15. doi:10.1016/j.ijfoodmicro.2015.04.018Toldrá, F., Aristoy, M.-C., & Flores, M. (2000). Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Research International, 33(3-4), 181-185. doi:10.1016/s0963-9969(00)00032-6Zhu, C.-Z., Zhang, W.-G., Zhou, G.-H., & Xu, X.-L. (2015). Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. Journal of the Science of Food and Agriculture, 96(1), 99-108. doi:10.1002/jsfa.7065Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., & Zhang, W. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951-958. doi:10.1016/j.foodchem.2015.08.101Dellafiora, L., Paolella, S., Dall’Asta, C., Dossena, A., Cozzini, P., & Galaverna, G. (2015). Hybrid in Silico/in Vitro Approach for the Identification of Angiotensin I Converting Enzyme Inhibitory Peptides from Parma Dry-Cured Ham. Journal of Agricultural and Food Chemistry, 63(28), 6366-6375. doi:10.1021/acs.jafc.5b02303Gallego, M., Mora, L., & Toldrá, F. (2018). Characterisation of the antioxidant peptide AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chemistry, 258, 8-15. doi:10.1016/j.foodchem.2018.03.035Gallego, M., Mora, L., Fraser, P. D., Aristoy, M.-C., & Toldrá, F. (2014). Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham. Food Chemistry, 149, 121-128. doi:10.1016/j.foodchem.2013.10.076Castellano, P., Mora, L., Escudero, E., Vignolo, G., Aznar, R., & Toldrá, F. (2016). Antilisterial peptides from Spanish dry-cured hams: Purification and identification. Food Microbiology, 59, 133-141. doi:10.1016/j.fm.2016.05.018Gallego, M., Mora, L., & Toldrá, F. (2019). Potential cardioprotective peptides generated in Spanish dry-cured ham. Journal of Food Bioactives, 6. doi:10.31665/jfb.2019.6188Gallego, M., Mora, L., Reig, M., & Toldrá, F. (2018). Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Research International, 105, 873-879. doi:10.1016/j.foodres.2017.12.006Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.-C., Arihara, K., & Toldrá, F. (2013). Purification and Identification of antihypertensive peptides in Spanish dry-cured ham. Journal of Proteomics, 78, 499-507. doi:10.1016/j.jprot.2012.10.019Wang, J., Lu, S., Li, R., Wang, Y., & Huang, L. (2019). Identification and characterization of antioxidant peptides from Chinese dry‐cured mutton ham. Journal of the Science of Food and Agriculture, 100(3), 1246-1255. doi:10.1002/jsfa.10136Fialho, T. L., Carrijo, L. C., Magalhães Júnior, M. J., Baracat-Pereira, M. C., Piccoli, R. H., & de Abreu, L. R. (2018). Extraction and identification of antimicrobial peptides from the Canastra artisanal minas cheese. Food Research International, 107, 406-413. doi:10.1016/j.foodres.2018.02.009Timón, M. L., Andrés, A. I., Otte, J., & Petrón, M. J. (2019). Antioxidant peptides (<3 kDa) identified on hard cow milk cheese with rennet from different origin. Food Research International, 120, 643-649. doi:10.1016/j.foodres.2018.11.019Baptista, D. P., Galli, B. D., Cavalheiro, F. G., Negrão, F., Eberlin, M. N., & Gigante, M. L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87, 75-83. doi:10.1016/j.idairyj.2018.08.001Jin, Y., Yu, Y., Qi, Y., Wang, F., Yan, J., & Zou, H. (2016). Peptide profiling and the bioactivity character of yogurt in the simulated gastrointestinal digestion. Journal of Proteomics, 141, 24-46. doi:10.1016/j.jprot.2016.04.010Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Antibacterial and antiproliferative peptides in synbiotic yogurt—Release and stability during refrigerated storage. Journal of Dairy Science, 99(6), 4233-4242. doi:10.3168/jds.2015-10499Fekete, Á., Givens, D., & Lovegrove, J. (2015). Casein-Derived Lactotripeptides Reduce Systolic and Diastolic Blood Pressure in a Meta-Analysis of Randomised Clinical Trials. Nutrients, 7(1), 659-681. doi:10.3390/nu7010659Chakrabarti, S., & Wu, J. (2015). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells. PLOS ONE, 10(2), e0117492. doi:10.1371/journal.pone.0117492Chakrabarti, S., Jahandideh, F., Davidge, S. T., & Wu, J. (2018). Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Enhance Insulin Sensitivity and Prevent Insulin Resistance in 3T3-F442A Preadipocytes. Journal of Agricultural and Food Chemistry, 66(39), 10179-10187. doi:10.1021/acs.jafc.8b02051Li, Y., Sadiq, F. A., Liu, T., Chen, J., & He, G. (2015). Purification and identification of novel peptides with inhibitory effect against angiotensin I-converting enzyme and optimization of process conditions in milk fermented with the yeast Kluyveromyces marxianus. Journal of Functional Foods, 16, 278-288. doi:10.1016/j.jff.2015.04.043Elkhtab, E., El-Alfy, M., Shenana, M., Mohamed, A., & Yousef, A. E. (2017). New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Journal of Dairy Science, 100(12), 9508-9520. doi:10.3168/jds.2017-13150Najafian, L., & Babji, A. S. (2018). Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization, 12(3), 2174-2183. doi:10.1007/s11694-018-9833-1Kleekayai, T., Saetae, D., Wattanachaiyingyong, O., Tachibana, S., Yasuda, M., & Suntornsuk, W. (2014). Characterization and in vitro biological activities of Thai traditional fermented shrimp pastes. Journal of Food Science and Technology, 52(3), 1839-1848. doi:10.1007/s13197-014-1528-yGallego, M., Aristoy, M.-C., & Toldrá, F. (2014). Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science, 96(2), 757-761. doi:10.1016/j.meatsci.2013.09.014Flores, M., & Toldrá, F. (2011). Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology, 22(2-3), 81-90. doi:10.1016/j.tifs.2010.09.007Martinez-Villaluenga, C., Peñas, E., & Frias, J. (2017). Bioactive Peptides in Fermented Foods. Fermented Foods in Health and Disease Prevention, 23-47. doi:10.1016/b978-0-12-802309-9.00002-9Santos, N. (2001). Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology, 68(3), 199-206. doi:10.1016/s0168-1605(01)00489-5Matsushita-Morita, M., Tada, S., Suzuki, S., Hattori, R., Marui, J., Furukawa, I., … Kusumoto, K.-I. (2010). Overexpression and Characterization of an Extracellular Leucine Aminopeptidase from Aspergillus oryzae. Current Microbiology, 62(2), 557-564. doi:10.1007/s00284-010-9744-9Stressler, T., Ewert, J., Merz, M., Funk, J., Claaßen, W., Lutz-Wahl, S., … Fischer, L. (2016). A Novel Glutamyl (Aspartyl)-Specific Aminopeptidase A from Lactobacillus delbrueckii with Promising Properties for Application. PLOS ONE, 11(3), e0152139. doi:10.1371/journal.pone.0152139ZOTTA, T., RICCIARDI, A., & PARENTE, E. (2007). Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. International Journal of Food Microbiology, 115(2), 165-172. doi:10.1016/j.ijfoodmicro.2006.10.026Herreros, M. ., Fresno, J. ., González Prieto, M. ., & Tornadijo, M. . (2003). Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). International Dairy Journal, 13(6), 469-479. doi:10.1016/s0958-6946(03)00054-2Bintsis, T., Vafopoulou-Mastrojiannaki, A., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2003). Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. Journal of Applied Microbiology, 95(1), 68-77. doi:10.1046/j.1365-2672.2003.01980.xMacedo, A. C., Vieira, M., Poças, R., & Malcata, F. X. (2000). Peptide hydrolase system of lactic acid bacteria isolated from Serra da Estrela cheese. International Dairy Journal, 10(11), 769-774. doi:10.1016/s0958-6946(00)00111-4González, L., Sacristán, N., Arenas, R., Fresno, J. M., & Eugenia Tornadijo, M. (2010). Enzymatic activity of lactic acid bacteria (with antimicrobial properties) isolated from a traditional Spanish cheese. Food Microbiology, 27(5), 592-597. doi:10.1016/j.fm.2010.01.004TOLDRÁ, F., CERVERÓ, M.-C., & PART, C. (1993). Porcine Aminopeptidase Activity as Affected by Curing Agents. Journal of Food Science, 58(4), 724-726. doi:10.1111/j.1365-2621.1993.tb09344.xStressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S., & Fischer, L. (2013). Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS ONE, 8(7), e70055. doi:10.1371/journal.pone.0070055Rul, F., Gripon, J.-C., & Monnet, V. (1995). St-PepA, a Streptococcus thermophilus aminopeptidase with high specificity for acidic residues. Microbiology, 141(9), 2281-2287. doi:10.1099/13500872-141-9-2281Chapot-Chartier, M.-P., Rul, F., Nardi, M., & Gripon, J.-C. (1994). Gene Cloning and Characterization of PepC, a Cysteine Aminopeptidase from Streptococcus thermophilus, with sequence Similarity to the Eucaryotic Bleomycin Hydrolase. European Journal of Biochemistry, 224(2), 497-506. doi:10.1111/j.1432-1033.1994.00497.xStressler, T., Eisele, T., Schlayer, M., & Fischer, L. (2012). Production, active staining and gas chromatography assay analysis of recombinant aminopeptidase P from Lactococcus lactis ssp. lactis DSM 20481. AMB Express, 2(1). doi:10.1186/2191-0855-2-39Stressler, T., Eisele, T., Kranz, B., & Fischer, L. (2014). PepX from Lactobacillus helveticus: Automated multi-step purification and determination of kinetic parameters with original tripeptide substrates. Journal of Molecular Catalysis B: Enzymatic, 108, 103-110. doi:10.1016/j.molcatb.2014.07.006Sinz, Q., & Schwab, W. (2012). Metabolism of amino acids, dipeptides and tetrapeptides by Lactobacillus sakei. Food Microbiology, 29(2), 215-223. doi:10.1016/j.fm.2011.07.007Chavagnat, F., Meyer, J., & Casey, M. G. (2000). Purification, characterisation, cloning and sequencing of the gene encoding oligopeptidase PepO fromStreptococcus thermophilusA. FEMS Microbiology Letters, 191(1), 79-85. doi:10.1111/j.1574-6968.2000.tb09322.xRodríguez-Serrano, G. M., Garcia-Garibay, J. M., Cruz-Guerrero, A. E., Gomez-Ruiz, L. del C., Ayala-Nino, A., Castaneda-Ovando, A., & Gonzalez-Olivares, L. G. (2018). Proteolytic System of Streptococcus thermophilus. Journal of Microbiology and Biotechnology, 28(10), 1581-1588. doi:10.4014/jmb.1807.07017Juille, O., Bars, D. L., & Juillard, V. (2005). The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. Microbiology, 151(6), 1987-1994. doi:10.1099/mic.0.27730-0Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., & Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11), 3679-3688. doi:10.1007/s13197-017-2830-2Chang, O. K., Roux, É., Awussi, A. A., Miclo, L., Jardin, J., Jameh, N., … Perrin, C. (2014). Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides. International Dairy Journal, 38(2), 104-115. doi:10.1016/j.idairyj.2014.01.008Ha, G. E., Chang, O. K., Jo, S.-M., Han, G.-S., Park, B.-Y., Ham, J.-S., & Jeong, S.-G. (2015). Identification of Antihypertensive Peptides Derived from Low Molecular Weight Casein Hydrolysates Generated during Fermentation by Bifidobacterium longum KACC 91563. Korean Journal for Food Science of Animal Resources, 35(6), 738-747. doi:10.5851/kosfa.2015.35.6.738Pescuma, M., Espeche Turbay, M. B., Mozzi, F., Font de Valdez, G., Savoy de Giori, G., & Hebert, E. M. (2013). Diversity in proteinase specificity of thermophilic lactobacilli as revealed by hydrolysis of dairy and vegetable proteins. Applied Microbiology and Biotechnology, 97(17), 7831-7844. doi:10.1007/s00253-013-5037-0Ali, E., Nielsen, S. D., Abd-El Aal, S., El-Leboudy, A., Saleh, E., & LaPointe, G. (2019). Use of Mass Spectrometry to Profile Pept
    corecore